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Abstract-In this work, the applicability of the Boussinesq approximation is investigated for natural 
convection in a fluid-saturated porous cavity with vertical walls maintained at two different temperatures 
and horizontal walls completely insulated. Numerical calculations are performed for two different fluids 
of practical interest, water and air, in a wide range of Rayleigh numbers and aspect ratios. Flow and 
temperature fields and heat transfer rates obtained through the evaluation of a model that includes fluid 
temperature dependent properties, are presented. One of the most important conclusions is that the Nusselt 
number evaluated through the Boussinesq approximation can be substantially different from the Nusselt 

number obtained with this model. 

INTRODUCTION 

NATURAL convection in porous media is a fun- 
damental problem associated with various practical 
applications ; in particular, it has received special 
attention in geothermal reservoir exploitation, high 
performance insulation building, and heat exchangers. 
Within this context of research a thoroughly 
numerical study concerning the convective heat trans- 
fer in rectangular porous cavities of low aspect ratio 
(A < l), with vertical walls maintained at two differ- 
ent temperatures and horizontal walls completely 
insulated, has been recently published in the literature 
[l]. In this mentioned work, Darcy’s law is assumed 
to hold and the porous cavity is filled with a normal 
Boussinesq fluid. Other numerical and analytical 
results have also been reported for square and tall 
porous cavities (A > 1) under the same physical 
assumptions as those used ir, the work of Prasad and 
Kulacki [l] (see, also, refs. [2-4]). 

Since the validity of assumptions in the formulation 
and solution of physical problems can be verified by 
the use of high-speed modern computers, there exist 
now research motivations to study the limits of appli- 
cability of the Boussinesq approximation associated 
with the Newtonian fluid flow in a porous cavity. 
Within this scope, Gartling and Hickox [5] used a 
numerical method to examine the changes in flow and 

temperature fields and heat transfer rates of a water 
saturated square porous bed (A = 1) for the following 
mathematical models : (1) the Boussinesq approxi- 
mation is retained, (2) this approximation is relaxed 
to account for the variability of fluid viscosity and 
thermal conductivity (extended system), and (3) the 
Boussinesq approximation is not used (complete 
system). 

Nevertheless, it has to be pointed out here that the 
complete system analyzed by Gartling and Hickox 
[5] does not include the effects of pressure variations 
owing to changes in fluid density ; this term can be 
important under certain physical situations as it will 
be shown in this work. Also, the results reported by 
these authors only cover a range of Rayleigh numbers 
between 0 and 300, and appreciable numerical differ- 
ences between Nusselt numbers of the above men- 
tioned models are not observed. 

We present here a numerical study concerning the 
natural convective heat transfer in a rectangular 
porous cavity (0.3 < A < 3). The Boussinesq approxi- 
mation is eliminated because under certain conditions 
the product between the isobaric coefficient of fluid 
thermal expansion j? and the difference between the 
hot and cold wall temperatures AT is not necessarily 
negligible. Moreover, all the fluid properties are 
allowed to change with temperature. Although the 
principal difference of this model with that proposed 
by Gartling and Hickox [S] consists of the inclusion 
of the pressure work in the thermal energy equation, 
we have been able to compute our model at very large 
Rayleigh numbers (0 < Ra* < 10000, which is the 
same range of values analyzed in ref. [l]) for two 
different fluids of practical interest, water and air. 
Thus, our calculations include a fluid with a viscosity 
that decreases with temperature and a fluid with the 
opposite trend. Therefore, important physical con- 
clusions can be obtained concerning the effects of 
viscosity change with temperature on Nusselt num- 
bers and flow fields, as it will be shown in this work. 

Results are also presented for typical Rayleigh num- 
bers found in geothermal reservoirs. Comparison of 
flow and temperature fields and heat transfer rates 
obtained through numerical evaluations are carried 
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NOMENCLATURE 

A aspect ratio, L/D u fluid velocity in x-direction, 

B dimensionless isobaric coefficient of (-cr/RD)(&j/aY) [ms-‘1 
thermal expansion, /IAT V fluid velocity in y-direction, 

c specific heat of fluid at constant pressure (crL/RD ‘)(&j/8X) [m s-‘1 
[J kg-’ C-‘1 V superficial velocity vector [m s - ‘1 

D width of porous cavity [m] x, y Cartesian coordinates [m] 

F dimensionless effective conductivity x dimensionless distance on x-axis, x/D 

; 

acceleration due to gravity [m s -‘I Y dimensionless distance on y-axis, y/L. 

average heat transfer coefficient on heated 
wall, q/(Th-T,) [Wm-‘“C’] Greek symbols 

K permeability of porous medium [m’] c( thermal diffusivity of porous medium, 

k, effective thermal conductivity of the k,/pc [m’ss’] 
saturated porous medium [wm-’ ‘C’] B isobaric coefficient of thermal expansion 

k fluid conductivity [w m- ’ “C ‘1 of fluid [“C-‘1 

k, solid conductivity wrn-’ “C’] Y (ll~~c)@~l~~), 
L height of porous cavity [m] t, q dimensionless stretched coordinates 

M dimensionless viscosity A Tc/(T,- T,) 
M, molecular weight [kg kmol - ‘1 p dynamic viscosity of fluid [kg m-’ s ‘1 

Nu Nusselt number based on cavity width, 0 dimensionless temperature, 

hD/k, (T- T,)/(T,- Tc) 

P pressure [Pa] P density of fluid [kgm-‘1 

4 heat transfer rate per unit area [W m-‘1 4 porous medium porosity 
R dimensionless density Ic/ stream function. 

Ra* Rayleigh number based on cavity width, 

&KDATl(& Subscripts 

R, gas-law constant [J kg-’ ‘C’] cooled wall 

T temperature [“Cl “h heated wall 

AT temperature difference, T,, - T, [“Cl i,_i spatial position in the computational mesh 

u characteristic velocity, k,,,,,/(p,,cD) [ms-‘1 n number of iteration. 

out by computing the model with and without the 
Boussinesq approximation. These comparisons show 
differences in the heat transfer rate, evaluated through 
the Nusselt number, which are greater than 30%. It 
is also important to mention here that different flow 
structures were found due to the dependence of fluid 
Viscosity with temperature. 

MODEL FORMULATION AND SOLUTION 

The system, which is the same as that of Prasad 
and Kulacki [I], consists of a fluid saturated porous 
medium enclosed by two vertical isothermal walls at 
T,, and T, with T,, > T,, and two adiabatic horizontal 
walls. Heat is transferred in and out of the porous 
cavity in steady state. Since the Boussinesq approxi- 
mation is eliminated, conservation of mass implies 

V*(pv) = 0 (1) 

where the fluid density p is a non-linear function of 
temperature T. It is also assumed that the Newtonian 
fluid moves slowly, so that Darcy’s law applies 

v =:(-VP+&. (2) 

In equation (2) the permeability K is constant and 
the fluid viscosity p is also a non-linear function of 
temperature T. In addition, the Fourier constitutive 
equation for heat conduction and Maxwell-Gibbs 
relations for the system internal energy can be used. 
Therefore, the energy balance results as follows : 

cV*(pvT) = V.(k,VT)-T FT V.V. 
0 

(3) 
P 

In equation (3) the heat capacity c is taken as constant, 
either for air or water, because its variation with T is 
negligible in a wide range of temperatures. Since the 
energy balance describes the system thought of as a 
mixture (fluid and solid matrix) we have defined the 
effective heat conduction through the following equa- 
tion (see also, Gartling and Hickox [5]) : 

k,(T) = 4W‘?+ (l-4% (4) 

4 being the porous medium porosity. Moreover, it is 
found that k, varies with temperature only through 
the fluid conductivity k(T), which is also a non-linear 
function of T, and that k, is independent of tem- 
perature. 

Equations (l)-(3) are next written in terms of the 
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dimensionless stream function $ and temperature 0 
with the same scales and symbols used by Prasad and 
Kulacki [l], which are presented here in the 
Nomenclature. However, it should be observed that 
the stream function has to be redefined in this work 
as follows : 

(5) 

(6) 

so that mass balance (equation (1)) is satisfied when 
the Boussinesq approximation is eliminated. From 
equation (2) we can evaluate the term V x (pv) which 
combined with equations (5) and (6) yields 

where Ra* = Kg/3ATph/phU is the Rayleigh number 
evaluated at T,,, A = LID is the aspect ratio and 
B = /IAT is the dimensionless fluid coefficient of ther- 
mal expansion. In equation (7) we have also defined 
the dimensionless viscosity M(B) and density R(B) 

as functions of dimensionless temperature 0 (see the 
Appendix). 

Equation (3) can be combined with equations (5) 
and (6) in order to obtain the following dimensionless 
equation : 

where F(e) is the dimensionless effective conductivity 
as a function of dimensionless temperature (see the 
Appendix). Since 0 = (T- T,)/(T, - T,), a new par- 
ameter A = TJ(T, - T,) is necessary to introduce in 
the pressure work term. In equation (8), y is defined 
as 

1 ap 
Y=- - = 0 phc aT p phc (apim’ 

(9) 

In the dimensionless analysis presented here the 
unknown characteristic velocity is U = kmh/(phcD), 

which is consistent with the analysis of Prasad and 
Kulacki [ 11. 

Hydrodynamics and thermal boundary conditions 
are 

* = 0, 0=1 at X=0 (10) 

* =O, 0=0 at X=1 (11) 

ae 
$=O, -=0 at Y=Oandl. 

aY (12) 

In order to explain physically these boundary con- 
ditions, one has to observe that the fluid does not 
leave the porous cavity, which implies that the normal 
component of fluid velocity at the walls is zero. Also, 
adiabatic walls require that heat conduction flux be 
zero, while vertical walls have a prescribed value of 
temperature. 

Once the flow and temperature fields are numeri- 
cally solved, we can evaluate two Nusselt numbers as 
follows : 

Nu, = (13) 

at the hot wall and 

(14) 

at the cold wall. 
Central finite difference equations are derived from 

the divergence form of equations (7) and (8) ; however, 
second upwind differences for the convective terms [6] 
are introduced in the energy balance. In order to solve 
the simultaneous algebraic equations that result from 
the discretization process, a point iterative method is 
applied which makes use of the new values at each 
grid point as soon as they are available. A convergence 
criterium is defined according to the following norms : 

and 

where ij imply spatial position in the computational 
mesh and n refers to the iteration number. E was fixed 
at 10m5 because the numerical method yields almost 
the same Nusselt numbers as those obtained when 
E = 1O-6 (differences do not exceed 1%) at a lower 
computational cost. 

To accelerate convergence, the temperature field is 
initialized with the analytic solution of equation (8) 
in the particular case when A = 0. For low Rayleigh 
numbers, over-relaxation of the temperature matrix 
accelerates convergence, and for high Rayleigh num- 
bers, under-relaxation is appropriate to compute the 
stream function. The over-relaxation parameter is 
varied between 1 and 1.9, whereas a suitable value for 
the under-relaxation parameter is between 0.5 and 
0.9. Also, temperature gradients at the horizontal 
walls are evaluated using two-point formulas for the 
derivatives. 
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Table 1. Meshes used for different values of Rat and A 

Ra* 50 100 1000 2000 5000 10000 

A=0.3 31 x21 31 x21 41 x 31 41 x 31 41 x 31 41 x 31 
0.5 <A < 1 31 x 31 31 x31 41 x41 41 x41 41x41 41x41 
264~3 21 x 31 21 x 31 31x41 31 x41 31 x41 31x41 

- 

In the present work, grid intervals AX and A Y are 
continuously varied following the method proposed 
by Kalnay de Rivas [7]. Therefore, a new coordinate 
system (5, rl) needs to be defined so that 

I (1% X = sin* 
( > 

;t 

Y = sin* 
x 

( > 
2s 

In the new coordinate system the grid intervals A< and 
Arl have to be chosen as constant. With this coordinate 
system, very fine grid intervals for X and Y can be 
obtained near vertical walls, particularly when bound- 
ary layers are present for large Rayleigh numbers. 
Mesh sizes of the order of 0.0015 can be obtained near 
walls for Ra* > 1000 and A < 1. 

Table 1 shows meshes used for different Rayleigh 
numbers and aspect ratios. These mesh sizes allowed 
us to obtain an acceptable invariance of results when 
Aq and AC are changed. 

Consistency of numerical results can be verified 
from a physical point of view by performing a macro- 
scopic energy balance in the porous cavity, i.e. the 
heat flux that enters the cavity through the hot wall 
has to be equal to the heat flux that leaves the cavity 
at the cold wall. Consequently, it is required that 

Nu,, = Nu,. (17) 

This energy balance was satisfied within 1% for 94% 
of the cases reported here, whereas the error was 
within 2% for the rest (see also Prasad and Kulacki 
[I]). Therefore, through this work we designate 
Nu = Nu,, = Nu,, and NM, is the Nusselt number when 
the Boussinesq approximation is imposed. 

We have also carried out numerical evaluations 
when equation (8) is discretized by using the first 
upwind differencing scheme (see, e.g. ref. [6]). 
Although the energy balance (equation (17)) is well 
satisfied, this method yields Nusselt numbers which 
are substantially different from those of the second 
upwind difference scheme. Therefore, the first upwind 
method is not recommended for this kind of problem 
and our conclusion is the same as that already 
reported by Prasad and Kulacki [I]. 

It is also important to mention here, that the classi- 
cal central finite difference discretization procedure 
can only be used accurately at low Rayleigh numbers. 
To be more precise, we found that it can be used for 
Ra* < 1000 when A < 1. 

RESULTS AND DISCUSSION 

When the Boussinesq approximation is imposed 
(i.e. y = 0 and F = 1 in equation (8); M = R = 1 and 
i?R/dX = -B(tM/aX) in equation (7)), our results are 
in good agreement with those previously reported by 
Prasad and Kulacki [ 1,4]. In fact, Table 2 shows that 
only small differences between Nusselt numbers Nut, 
are found for large Rayleigh numbers and low geo- 
metric aspect ratios. These differences do not exceed 
12%, and they are a consequence of the more refined 
grid used. Nevertheless, the Rayleigh number at which 
the flow structure changes from unicellular to multi- 
cellular convection does not agree with that reported 
by these authors when A = 0.5. Thus, our numerical 
evaluations establish that cellular change is produced 
for Ra* < 100. This result was obtained with and 
without the coordinate transformation, with a differ- 
ent number of grid points (21 x 21, 31 x 31 and 
41 x 41) in both the X- and Y-directions and with two- 
and three-point formulas for derivatives. 

Throughout the present discussion, equations (7) 
and (8) are designated the complete model. Therefore, 
we performed calculations with this model for the 
following two cases : water (Case I) and air (Case II). 
The results obtained are next discussed and compared 
with their counterpart that arises when the Boussinesq 
approximation is imposed. 

In order to evaluate the Rayleigh number, which is 
proportional to (ATD), we consider three different 
porous cavity widths, D: 200, 20 and 2 m, while AT 
is varied from 1 to 200°C. 

Case I: water 

Table 3 shows numerical values of Nusselt number 
Nu for different aspect ratios A and for D = 200 m. 
These results are of particular interest in geothermal 
reservoirs (see, e.g. ref. [S]). 

If Table 3 is compared with Table 2 we find that Nu 
is greater than Nur, for Ra* < 2000 (AT < 40°C) ; on 
the other hand, the opposite situation is true for 
Ra* > 2000 (AT > 40°C). Also, for Ra* < 2000, 
differences between Nu and Nus do not exceed lo%, 
while for Ra* = 10 000 we find differences as large as 
50%, independently of the value of A. 

In order to explain that Nu < Nur, for AT > 40°C 
one has to observe that the relation between the 
Prandtl number evaluated at the local temperature 0 
and the Prandtl number referred to the hot tempera- 
ture, 0 = 1, is approximately unity or slightly greater 
than one for AT < 40°C and it is greater than one for 
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Table 2. Selected values of Nu, for various Ra* and aspect ratios, from our numerical results and from the 
results of Prasad and Kulacki 

2515 

Ra* 50 100 

This work N% 

A = 0.3 
Flow structure 

P&K N% 
Flow structure 

This work N% 

A=O.S 
Flow structure 

P&K NUB 
Flow structure 

This work NUB 

A = 0.7 
Flow structure 

P&K N% 
Flow structure 

This work NUB 

A = 0.9 
Flow structure 

P&K Nu, 
Flow structure 

This work Nu, 

A=1 Flow structure 
P NUB 

This work NUB 

A=2 p 
Flow structure 
Nu, 

A=3 This work NUB 
Flow structure 

u, unicellular flow. 
m, multicellular flow. 
P & K, results reported in ref. [l]. 
P, results reported in ref. [4]. 

1.14 

l.lf3 

115 

l.u43 

l.u74 

l.u69 

113 

l.u96 

1.“95 

2.uol 
1.95 

l.u94 
1.44 

U 

38.19 59.25 

41;6 6&O 

38Y7 55?9 

43:8 62:8 

35?15 50:6 

38?5 55:52 

3& 46:03 

35:49 50:20 

31:21 44:17 

33Y58 48Yl8 
22.81 31.62 

22:45 35:7 
18.89 26.41 

U m 

AT > 40°C. This relation can be evaluated directly 
from M(e)/F(e) and when it is greater than one, the 
variable temperature fluid has less thermal con- 
ductivity and more viscosity than the Boussinesq fluid. 

becomes important on M(@/F(Q) and the heat trans- 
fer decreases. 

Although for AT < 4O”C, the relation 
M(B)/F(B) x 1, differences between Nu and NM, are 
due to the pressure work term in equation (8). More- 
over, these differences present a minimum when 
Ra* - 2000 (AT - 40°C) for all values of A. In fact, 
at this point, the effects on the heat transfer associated 
with thermal changes in M(e)/F(Q) and in the pressure 
work term compensate each other. 

From Table 3 it is also interesting to analyse the 
effect of the aspect ratio on Nu. Thus, it is concluded 
that increasing A, the following trends are obtained : 

(a) Nu decreases for A > 1 and Ra* > 0 ; 
(b) NM increases for A < 1 and Ra* < 1000 ; 
(c) Nu decreases for A < 1 and Ra* > 7500. 

However, if 1000 < Ra* ,< 7500 and A < 1, the Nus- 
selt number is not a monotonic function of A. This 
has also been observed by Prasad and Kulacki [ 11. 

From Table 3 it is concluded that the Nusselt num- Figure 1 shows the relation Nu/NuB as a function 
ber does not always increase for a fixed value of A. of Ra* for different porous cavity widths. When D = 2 
This is so because our complete model is able to evalu- m, Nu/Nu, is less than one for all Rayleigh numbers; 
ate the exponential water viscosity decrease with AT; on the other hand, for D = 20 and 200 m there exists 
therefore, when the temperature difference across the a range of Rayleigh numbers in which Nu > Nus. In 
porous cavity is near lOO”C, the viscosity variation Fig. 1, smaller AT are required to obtain a fixed value 

1.39 
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- 
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U 
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14:2 
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18.99 
m 
- 

22?b3 
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- 

2l?l4 
m 

19Y9 
m 

19Y5 

211151 
14.51 
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12.09 
U 

Table 3. Selected values of Nu for various Ra* and aspect ratios when D = 200 m (Case I) 

Ra* 50 100 1000 2000 5000 7500 8500 10000 

AT 1 2 20 40 100 150 170 200 

A = 0.3 1.2 1.47 11.05 18.82 29.43 31.11 30.65 29.42 
A=0.5 1.51 2.44 14.47 21.55 30.19 31.18 30.65 29.28 
A = 0.7 1.89 3.07 14.53 20.60 27.93 28.66 28.12 26.84 
A = 0.9 2.11 3.34 13.90 19.26 25.72 26.32 25.83 24.60 
A=1 2.17 3.40 13.51 18.64 24.75 25.30 24.84 23.61 
A=2 2.14 3.16 10.52 14.05 18.11 18.42 18.12 17.28 
A=3 1.90 2.75 8.82 11.72 15.10 15.38 15.14 14.43 
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FIG. 1. Nu/Nu, as a function of Ra* when the fluid is water 
(Case I), T,, = 200°C. The dashed line refers to the results 

reported by Gartling and Hickox [5]. 

of Ra* when D increases. Therefore, the effect of the 
pressure work is more important than the effect of the 
local Prandtl number, on the heat transfer. 

It is also interesting to mention here that Blythe 
and Simpkins [9] studied thermal convection in a fluid 
saturated porous layer through integral relations, 
in the high Rayleigh number limit, for a tempera- 
ture dependent fluid viscosity. Moreover, their 
calculations consider a linear relation between 
~(0 = 0)/p(0) and 0. When their results (see Fig. 7 
and equation (4-10) of ref. [9]) are applied to the case 
in which water is the fluid that fills the porous cavity, 
it is inferred that Nu is slightly greater than Nus for 
Ra* < 10 000 (AT < 200°C). Taking into account 
that Blythe and Simpkins [9] used the cold wall tem- 
perature as the reference temperature, we conclude 
here that the trend of their results is in good agreement 
with ours, although greater differences between NU 
and NuB are expected in their work with a more 
realistic functionality between ~(0 = 0)/p(Q) and 8. 

In order to compare our results with those reported 
by Gartling and Hickox [5], it should be observed that 
in their work a Rayleigh number equal to 300 implies a 
A.T = 7O”C, hence the system studied by these authors 
yields values that lie between the curves corresponding 
to D = 20 and 2 m, and they are illustrated by a 
dashed line in Fig. 1. 

Figure 2 shows the temperature profile at the 
midheight of the porous cavity when A = 1 and 
D = 200 m for different Ra*, obtained from the 
numerical solution of the complete model (full lines) 
and when the Boussinesq approximation is considered 
(dashed lines). For Ra* = 50 (AT = 1 “C) temperature 
profiles computed from both models are similar. How- 
ever, for Ra* = 5000 (AT = 100°C) the curves of 6’ as 
a function of X depend substantially upon which 
model is used. Results illustrated in Fig. 2, show that 
large values of Ra* are associated with sharp tem- 
perature drops near the vertical walls due to the 
boundary layer formation, as it is expected, while in 
the core region the temperature is linear in X for the 
complete model and it is almost constant when the 
Boussinesq approximation is considered. Also, in this 

FIG. 2. Temperature distribution at the vertical midplane, 
Y = 0.5, for A = 1 and D = 200 m (Case I). 

last case, 0 as a function of X and at Y = 0.5, is 
practically invariant for Ru* > 5000. 

If Ru* > 2000 the slope dB/dX, near vertical walls, 
for the complete model is always smaller than 
the slope for the Boussinesq approximation ; this is 
consistent with the result that Nu/NuB < 1 for 
Ru* >, 2000. Since the transition from pure con- 
duction to boundary layer regimes is a consequence 
of competition between heat conduction and heat con- 
vection, it is inferred that this transition has to occur 
at higher Rayleigh numbers than those predicted by 
considering the Boussinesq approximation, when 
water is the fluid that fills the porous cavity. 

Figure 3 shows temperature distributions at 
X = 0.5 for two values of Ru* when A = 1 and 
D = 200 m, for the complete model (full lines) and for 
the Boussinesq model (dashed lines). In this figure, 
linear temperature profiles in Y, of variable extension, 
are observed. Nevertheless, for large values of Ru*, 
results corresponding to the complete model show 
that these linear regions are not placed in the middle 
zone of the porous cavity, as it always occurs when 
the Boussinesq approximation is used. 

From curves shown in Figs. 2 and 3, and from all 
the examples discussed in Case I, it is concluded that 
the dimensionless temperature at the porous cavity 

1.0 

J 

0.0 0.2 Q4yo.6 08 1.0 

FIG. 3. Temperature distribution at the horizontal midplane, 
A’= 0.5, for A = 1 and D = 200 m (Case I). 
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Table 4. Flow structure for various Ra* and aspect ratios, for Boussinesq approximation (BA) and complete 
model (CM) in Case I (D = 200 m) 

A = 0.3 

A = 0.5 

A = 0.7 

A = 0.9 

A=1 

A=2 

A=3 

Ra* 50 100 1000 2000 5000 10000 

AT 1 2 20 40 100 200 

CM 
BA 
CM 
BA 
CM 
BA 
CM 
BA 
CM 
BA 
CM 
BA 
CM 
BA 

U 

U 

U 

U 
U 

U 

U 

U 

U 

U 

U 
U 

U 
U 

U 

m 
U 

U 

U 

m 
U 

U 

U 

U 

U 

U 

u 

U 

u, unicellular flow. 
m, multicellular flow. 

centre (X = 0.5 and Y = 0.5) is close to 0.5 only for 
AT < 40°C when the complete model is considered. 
This result points out that the condition usually 

employed in approximate analysis, based upon the so- 
called ‘centro symmetric property of the system’ (see, 
e.g. ref. [lo]) is only valid for low values of AT. 

Numerical results obtained through the evaluation 
of the two models studied here, show important 
differences in flow structure as shown in Table 4, 
where multicellular flow (two recirculating cells) 

appears in a smaller range of Ra*, when the fluid 
properties vary with temperature. 

Figures 4 and 5 show the isotherms and streamlines 
for the complete model and the Boussinesq approxi- 
mation when Ra* = 1000 and AT = 200°C. It is 
observed that isotherms are nearer the vertical walls 
in Fig. 5 (Boussinesq model) and that streamline dis- 
tribution is remarkably affected by temperature- 
dependent fluid properties. The solution that belongs 
to the complete model (Fig. 4) does not show the 
centro symmetric property which is always observed 
in the Boussinesq solution (see Fig. 5 and results 
reported in ref. [ 11). This asymmetry in the streamline 
distribution is a characteristic of the complete model 
solution and has been already reported by Gartling 
and Hickox [5] for small values of Ra*. Our numerical 
evaluations show that when only one cell is present in 
the flow field and AT > 4O”C, the cell is displaced 
towards the hot wall of the porous cavity, if water is 
the fluid that fills the porous medium. 

Case ZZ: air 
In this particular case the pressure of the system is 

maintained near 1 atm ; hence air is assumed as an 
ideal gas. It is readily shown that equation (9) can be 
written as 

R(W, 
y= M,c 

m 
m 
m 
m 
m 
m 
m 
m 
U 

m 
U 

U 

U 

U 

m 
m 
m 
m 
m 
m 
U 

m 
u 
U 

U 

U 

U 

U 

m m 
m m 
U U 

m m 
U U 

m U 

U U 

U U 

U U 

U U 

U U 

U m 
U U 

U m 
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where R, is the gas-law constant and M, is the average 
molecular weight of air. 

It is clear that if air is the fluid that fills the porous 
cavity, the permeability of the porous medium must 
be considerably greater in order to obtain a Rayleigh 
number comparable to that of Case I, when the dimen- 
sions of the system are not changed (see the Appen- 
dix). 

Table 5 shows Nusselt numbers obtained from the 
complete model when D = 200 m, for different aspect 
ratios A. From this table it is concluded that, increas- 
ing A, the following trends are obtained : 

(a) Nu decreases for A > 1 and Ra* > 0 ; 
(b) Nu increases for A < 1 and Ra* < 1000 ; 
(c) Nu decreases for A < 1 and Ra* 2 5000. 

FIG. 4. Streamlines and isotherms for Ra* = 1000 
(AT = 200°C) and A = 1 (Case I). 
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FIG. 5. Streamlines and isotherms for Ra* = 1000 and A = 1 
(Boussinesq approximation). 

However, if 1000 < Ra* < 5000, the Nusselt number 
is not a monotonic function of A. A similar result has 
been observed in Case I and in ref. [ 11. 

If Table 5 is compared with Table 2, it is concluded 
that Nu/NuB > 1. For a fixed value of A, differences 
between Nu and Nua are small (N 5%) when Ra* = 50 

(AT = 1 “C) and increase for large Rayleigh numbers. 
Thus, the relative difference between Nu and NuB is 
around 36% when Ra* = 10 000 (AT = 200°C). It is 
important to mention here that Zhong et al. [l l] 
studied the effects of variable properties on tem- 
perature and velocity fields and heat transfer rate in 
a two-dimensional square enclosure filled with air. 
They conclude that the Boussinesq approximation 
predicts the overall heat transfer adequately, up to a 
value of AT = 50°C. From our Tables 2 and 5, we 
find that differences between Nu and NuB do not 
exceed 13% for AT < 40°C. Therefore, our results are 
in good agreement with those reported in ref. [l 11. 

The trend followed by the relation Nu/NuB as a 
function of Ra* in Case II, is different from that 
previously reported in Case I. In order to explain this 
result, one has to observe that air viscosity increases 
with temperature while the opposite is true for water 
viscosity; thus, in Case II the relation M(Q)/F(Q) is 

1.0 r I I I 
10' 102 

R;1 
103 IO4 

FIG. 6. Nu/Nu, as a function of Ra* when the fluid is air 
(Case II), Th = 200°C. 

0.6 

8 

0.4 

FIG. 7. Temperature distribution at the vertical midplane, 
Y = 0.5, for A = 1 and D = 200 m (Case II). 

less than one for all values of AT. Therefore, the effects 
on the heat transfer associated with thermal changes 
in M(e)/F(Q) and in the pressure work are additive. 

Figure 6 shows Nu/Nur, as a function of Ra* for 
different porous cavity widths. As it is expected from 
our previous discussion, Nu > Nu, for all values of D 

and Ra*. 

Figure 7 shows the temperature profile at the 
midheight of the porous cavity when A = 1 and 
D = 200 m for different values of Ra*, when the com- 
plete model (full lines) and the Boussinesq approxi- 
mation (dashed lines) are considered. For Ra* = 50 
(AT = 1’C) temperature profiles computed from both 
models are similar. However, for Ra* = 5000 and 
10000, curves of 0 as a function of X depend again 
substantially upon which model is used. 

Table 5. Selected values of Nu for various Ra* and aspect ratios when D = 200 m (Case II) 

Ra* 50 100 1000 2000 5000 10000 

AT 1 2 20 40 100 200 

A = 0.3 1.20 1.49 12.46 23.36 49.39 88.96 
A = 0.5 1.52 2.49 15.95 25.85 47.65 80.67 
A = 0.7 1.91 3.13 15.89 24.44 43.32 72.47 
A = 0.9 2.14 3.40 15.13 22.73 39.67 66.13 
A=l 2.20 3.45 14.72 21.96 38.11 63.50 
A=2 2.16 3.21 11.40 16.45 27.48 47.97 
A=3 1.92 2.79 9.54 13.71 22.94 40.02 



Natural convective heat transfer in a rectangular porous cavity 2519 

t 

’ ’ ’ ’ ’ ’ ’ ’ 
00 0.2 0.4 y 0.6 0.8 to 

FIG. 8. Temperature distribution at the horizontal midplane, 
X = 0.5, for A = 1 and D = 200 m (Case II). 

Also the slope de/dX, near vertical walls, for the 
complete model is always greater than the slope for 
the Boussinesq model. Consequently, in this par- 
ticular case the transition from pure conduction to 
boundary layer regimes occurs at lower Rayleigh 
numbers than those predicted with the Boussinesq 
approximation, which is a result different to that 
obtained in Case I. 

Figure 8 shows the temperature distribution at 
X = 0.5 for two values of Ra* when A = 1 and 
D = 200 m, obtained from the evaluation of the com- 
plete model (full lines) and the Boussinesq model 
(dashed lines). It is observed that curves 0-Y for air 
(Fig. 8) and water (Fig. 3) are similar when Ra* = 50. 
However, for Ra* = 10 000, the functionality between 
0 and Y, at X = 0.5, depends substantially upon which 
fluid fills the porous cavity. 

From the curves shown in Figs. 7 and 8 and from 
examples discussed in this case, the dimensionless tem- 
perature at the porous cavity centre (A = 0.5 and 
Y = 0.5) is only close to 0.5 for low values of ATwhen 
the complete model is evaluated. This result is the 

FIG. 9. Streamlines and isotherms for Ra* = 1000 
(AT = ZOO’C) and A = 1 (Case II). 

same as that reported for water in Case I. 
Numerical results obtained through the evaluation 

of both models show a different change in flow struc- 
ture as shown in Table 6. These results and those 
presented in Table 4 point out that the criterion stated 
by Prasad and Kulacki [l] for the start of multicellular 
flow is no longer valid for the complete model, i.e. 
when fluid properties are dependent on temperature. 

Figure 9 shows the isotherms and streamlines for 
the complete model when Ra* = 1000 and 
AT = 200°C. In this figure, the isotherms are nearer 
the vertical walls of the cavity than in Fig. 5 where the 
Boussinesq approximation is used. Also the stream- 
line distribution is remarkably affected by tem- 
perature-dependent fluid properties, and the solution 
does not present the centro-symmetric property as in 

Table 6. Flow structure for various Ra* and aspect ratios, for Boussinesq approximation (BA) and complete 
model (CM) in Case II (D = 200 m) 

Ra’ 50 100 1000 2000 5000 10000 

AT 1 2 20 40 100 200 

A=0.3 
CM m m m 
BA U m m 

A = 0.5 
CM U U m 
BA U U m 

A = 0.7 
CM U U m 
BA U m m 

A = 0.9 
CM U U m 
BA U U m 

A=1 
CM U U U 

BA U U m 

A=2 
CM U U U 

BA U U U 

A=3 
CM U U U 

BA U U U 
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u, unicellular flow. 
m. multicellular flow. 
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Case I, which is always observed in the solution of the 
Boussinesq model. However, when one recirculating 
cell is present in the flow field at AT > 4O”C, this cell 
is displaced toward the hot wall in Case I, while in 
Case II it is displaced toward the cold wall of the 
cavity. 

CONCLUSIONS 

From our numerical study we conclude : 

(1) If the temperature difference across the porous 
cavity is increased, i.e. increasing the Rayleigh number 
for a fixed value of aspect ratio, the Boussinesq solu- 
tion shows a progressive departure from the solution 
of the complete model described in this work. 

(2) If water is the fluid that fills the porous cavity 
(Case I), the relation Nu/Nut, as a function of Ra*, 

can be either lower or greater than one when the cavity 
width is sufficiently large. However, for small values 
of D, this relation is always less than one. 

(3) If air is the fluid that fills the porous cavity 
(Case II), the relation Nu/Nu, as a function of Rn* is 
greater than one for all values of D. 

(4) If water is the fluid that fills the porous cavity, 
the change from pure conduction to boundary layer 
flow regimes takes place at larger Rayleigh numbers 
than those predicted with the Boussinesq model. 
However, the opposite is true if the fluid is air. 

(5) Asymmetries in flow fields are observed for 
AT 2 40°C. For the unicellular flow regime, the centre 

of the cell is displaced toward the hot wall for water 
and toward the cold wall for air. 
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APPENDIX: POROUS MEDIUM AND FLUID 
PROPERTIES USED IN CASES I AND II 

Case I: water 

p,, = 0.8gcm-’ 

c = 5.01 Jg~’ “C-’ 

ps = 1.07 x 10m3 gem-' s-’ 

k,, = 1.94 x lo-* Jcm-’ S-I “C’ 

K = 0.809 x lO~‘crn’ 

f$ = 0.4 

with these values the Rayleigh number can be written as 

Ra* = 2.5 x lo-' ATD 

where AT is in “C and D in cm. 
From data reported in the literature [12] we find 

R(0) = 1 -O.O02[AT(0- I)]-0.4058 x lo-‘[AT@- l)]* 

-0.2455 x lO~*[AT(& l)]’ 

F(0) = {2.594[1 +O.O05345[AT(& l)] 

+0.14x 10-4[AT(0- l)]’ 

+0.186x lo-‘(AT@& l)]‘] 

+1.5(1-4)}/[2.59$+1.5(1-+)I. 

Case II: air 

I$ = 0.4 

oh = 0.743 x 10e3 gcrn-j 

fl=2x 10-3”c-’ 

c = 1.05 Jg-’ “C’ 

p(h = 2 x 10-4gcm~‘s-’ 

kmh = 0.91 x lo-* Jcm-’ ss’ “C’ 

K= 3.9x10~‘cm2 

with these values the Rayleigh number can be written as 

Ra* = 2.5 x 1O-3 ATD 

where AT is in “C and D in cm. 
From data reported in the literature 1121 we find 

R(g) = 1 -O.O02[AT(& l)]-0.168 x lo-‘[AT@- I)]’ 

M(0) = l+O.OOl[AT(B-l)]-00.124~ 10-5[AT(0-l)]* 

F(0) = {0.0474[1 -O.O0125[AT(0- I)] 

-0.73 x 10-6[AT(0- l)]‘] 

+1.5(1-+)}/[0.047f$+1.5(1-~)]. 
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CONVECTION THERMIQUE NATURELLE DANS UNE CAVITE RECTANGULAIRE 
AVEC PROPRIETES VARIABLES DU FLUIDE-VALIDITE DE L’APPROXIMATION DE 

BOUSSINESQ 

R&urn&-L’applicabilite de l’approximation de Boussinesq est Btudibe pour la convection naturelle dans 
une cavite poreuse saturee de fluide, avec des parois verticales maintenues a deux temperatures differentes, 
et des parois horizontales parfaitement isolees. Des calculs numiriques sont conduits pour deux fluides 
d’inttret pratique, l’eau et l’air, dans un large domaine de nombre de Rayleigh et de rapport de forme. On 
presente les champs de vitesse et de temperature, ainsi que les flux thermiques transfer&s, obtenus a partir 
dun modele avec la temperature. Une conclusion la plus importante est que le nombre de Nusselt &value 

avec l’approximation de Boussinesq peut &tre sensiblement different de celui obtenu avec ce modtle. 

WARMETRANSPORT DURCH NATtiRLICHE KONVEKTION IN EINEM 
RECHTECKIGEN PORtZSEN KGRPER MIT VARIABLEN 

FLUIDSTOFFWERTEN-GULTIGKEIT DER BOUSSINESQ-APPROXIMATION 

Zusammenfassung-In dieser Arbeit wird die Brauchbarkeit der Boussinesq-Approximation fur natiirliche 
Konvektion in einem fluid-geslttigten, poriisen K&per untersucht, dessen vertikale W&de auf zwei 
verschiedenen Temperaturen gehalten werden, und dessen horizontale Wande vollkommen isoliert sind. 
Es werden fur zwei in der Praxis interessante Fluide, Wasser und Luft, numerische Berechnungen in einem 
weiten Bereich der Rayleigh-Zahl und des Seitenverhlltnisses durchgefiihrt. Es werden Striimungs- und 
Temperaturfelder sowie Warmetibergangskoeffizienten prlsentiert, welche mit einem Model1 berechnet 
wurden, das temperaturabhangige Stoffwerte fiir das Fluid berticksichtigt. Eine der wichtigsten 
Erkenntnisse ist, daB die ilber die Boussinesq-Approximation berechnete Nusselt-Zahl stark von der 

Nusselt-Zahl abweicht, die mit dem hier vorgestellten Model1 berechnet wurde. 

CBO6OAHOKOHBEKTHBHbIfi TEI-IJIOOEMEH ~HAKOCTM C HEPEMEHHMMM 
CBORCTBAMH B HP5IMOYFOJIbHOH I-IOPHCTOti HOJIOCTM 

(IIPABOMEPHOCTL HPHPJHDKEHH5I EYCCHHECKA) 

~OTaIWS-ki3yWia B03MOXHOCTb ITpHMeHeHan npw6nEmeHnn 6yCCHHeCKa B cnyvae CBO6OnHOii KOH- 
BeKUHH B l-IOpW2TOfi HaCbIlrreHHOfi XHAKOCTbIO IIOJIOCTH,BepTHKa.lIbHble CTCHKH KOTOpOfi HMe,OTpa3Hy,‘, 

TeMllepaTypy, a rOpH30HTUlbHbIe IlOnHOCTbW) TetIJlOH30JIHPOBaHbI. %n’fOnHeHbI SKJleHHbIe paCWTbl 

arm neyx pa3nuYHblx cpen(~onb~ H Bo3nyxa)~ unipoKob4 mana30He 3HaqeHdi wcna Panen H ornome- 
HBII MHH CTOPOH lTOJIOCTH.~pHBe~eHbl pe3ynbTaTbI paC'ieTa IlOneii TeMnepaTypbI HCKOpOCTH TeSeHHK, 

a TaKXCe HHTeHCHBHOCTeii TennOO6MeHa II0 MOLIWIH, Y’iHTLdBaIOLUeii 3PBHCHMOCTb CBOiiCTB CPe.Abl OT 

TCMlEpaTj’pbI. OLWH H3 CaMLdX BBxHbIX BbIBOLlOB 3ZiK.illOYaeTCII B TOM, YTO 3HaWHHR ‘iHCJla HyCmTbTa, 

nonyyeeebxe c noMoubm npH6naXeHsn 6yCCHHCCKa u Ha 0cHoBe npHHnTofi hfonena, ~0ry~ cyurecr- 

BeHHOpa3nWaTbcK. 


