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Abstract—In this work, the applicability of the Boussinesq approximation is investigated for natural
convection in a fluid-saturated porous cavity with vertical walls maintained at two different temperatures
and horizontal walls completely insulated. Numerical calculations are performed for two different fluids
of practical interest, water and air, in a wide range of Rayleigh numbers and aspect ratios. Flow and
temperature fields and heat transfer rates obtained through the evaluation of a model that includes fluid
temperature dependent properties, are presented. One of the most important conclusions is that the Nusselt
number evaluated through the Boussinesq approximation can be substantially different from the Nusselt
number obtained with this model.

INTRODUCTION

NATURAL convection in porous media is a fun-
damental problem associated with various practical
applications; in particular, it has received special
attention in geothermal reservoir exploitation, high
performance insulation building, and heat exchangers.
Within this context of research a thoroughly
numerical study concerning the convective heat trans-
fer in rectangular porous cavities of low aspect ratio
(A4 < 1), with vertical walls maintained at two differ-
ent temperatures and horizontal walls completely
insulated, has been recently published in the literature
[1]). In this mentioned work, Darcy’s law is assumed
to hold and the porous cavity is filled with a normal
Boussinesq fluid. Other numerical and analytical
results have also been reported for square and tall
porous cavities (4 = 1) under the same physical
assumptions as those used ir: the work of Prasad and
Kulacki [1] (see, also, refs. [2-4]).

Since the validity of assumptions in the formulation
and solution of physical problems can be verified by
the use of high-speed modern computers, there exist
now research motivations to study the limits of appli-
cability of the Boussinesq approximation associated
with the Newtonian fluid flow in a porous cavity.
Within this scope, Gartling and Hickox [5] used a
numerical method to examine the changes in flow and
temperature fields and heat transfer rates of a water
saturated square porous bed (4 = 1) for the following
mathematical models: (1) the Boussinesq approxi-
mation is retained, (2) this approximation is relaxed
to account for the variability of fluid viscosity and
thermal conductivity (extended system), and (3) the
Boussinesq approximation is not used (complete
system).

Nevertheless, it has to be pointed out here that the
complete system analyzed by Gartling and Hickox
[5] does not include the effects of pressure variations
owing to changes in fluid density; this term can be
important under certain physical situations as it will
be shown in this work. Also, the results reported by
these authors only cover a range of Rayleigh numbers
between 0 and 300, and appreciable numerical differ-
ences between Nusselt numbers of the above men-
tioned models are not observed.

We present here a numerical study concerning the
natural convective heat transfer in a rectangular
porous cavity (0.3 < 4 < 3). The Boussinesq approxi-
mation is eliminated because under certain conditions
the product between the isobaric coefficient of fluid
thermal expansion f and the difference between the
hot and cold wall temperatures AT is not necessarily
negligible. Moreover, all the fluid properties are
allowed to change with temperature. Although the
principal difference of this model with that proposed
by Gartling and Hickox [5] consists of the inclusion
of the pressure work in the thermal energy equation,
we have been able to compute our model at very large
Rayleigh numbers (0 < Ra* < 10000, which is the
same range of values analyzed in ref. [1]) for two
different fluids of practical interest, water and air.
Thus, our calculations include a fluid with a viscosity
that decreases with temperature and a fluid with the
opposite trend. Therefore, important physical con-
clusions can be obtained concerning the effects of
viscosity change with temperature on Nusselt num-
bers and flow fields, as it will be shown in this work.

Results are also presented for typical Rayleigh num-
bers found in geothermal reservoirs. Comparison of
flow and temperature fields and heat transfer rates
obtained through numerical evaluations are carried
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aspect ratio, L/D

dimensionless isobaric coefficient of
thermal expansion, SAT

specific heat of fluid at constant pressure
[J k g -1 oC -1 ]

width of porous cavity [m]
dimensionless effective conductivity
acceleration due to gravity {ms—?]
average heat transfer coefficient on heated
wall, ¢/(T,— T.) [Wm~2°C~!]
permeability of porous medium [m?]
effective thermal conductivity of the
saturated porous medium [Wm~'°C~']
fluid conductivity [Wm~'°C ™)

solid conductivity [Wm~'°C~"]

height of porous cavity [m]
dimensionless viscosity

molecular weight [kg kmol ~']

Nusselt number based on cavity width,
hD/k.,

pressure [Pa]

heat transfer rate per unit area [Wm 2]
dimensionless density

Rayleigh number based on cavity width,
p9BKDAT/(ux)

gas-law constant [Jkg~'°C™']
temperature [°C]

temperature difference, T, — T, [°C]
characteristic velocity, k,/(oncD) [ms™']
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NOMENCLATURE

u fluid velocity in x-direction,
(—a/RD)(0y/0Y) [ms™']

v fluid velocity in y-direction,
(«L/RD*)(dy/0X) [ms™']

v superficial velocity vector [ms™']

Cartesian coordinates [m]

X  dimensionless distance on x-axis, x/D

Y  dimensionless distance on y-axis, y/L.

Greek symbols
o thermal diffusivity of porous medium,
ky/pc [m?s™'}
B isobaric coefficient of thermal expansion
of fluid [°C~"]
(1/pnc)(@p/0T),
n dimensionless stretched coordinates
T./(Ty—To)
dynamic viscosity of fluid [kgm~'s ™'}
dimensionless temperature,
(T_ Tc)/(Th_ Tc)
p  density of fluid [kgm ~?]
¢  porous medium porosity
¥ stream function.

DE > we

Subscripts
c cooled wall
h heated wall
i,j  spatial position in the computational mesh
n number of iteration.

out by computing the model with and without the
Boussinesq approximation. These comparisons show
differences in the heat transfer rate, evaluated through
the Nusselt number, which are greater than 30%. It
is also important to mention here that different flow
structures were found due to the dependence of fluid
viscosity with temperature.

MODEL FORMULATION AND SOLUTION

The system, which is the same as that of Prasad
and Kulacki [1], consists of a fluid saturated porous
medium enclosed by two vertical isothermal walls at
Ty and T, with T, > T, and two adiabatic horizontal
walls. Heat is transferred in and out of the porous
cavity in steady state. Since the Boussinesq approxi-
mation is eliminated, conservation of mass implies

Ve(pv)=0 (D

where the fluid density p is a non-linear function of
temperature 7. It is also assumed that the Newtonian
fluid moves slowly, so that Darcy’s law applies

k
v= ;(—Vp+pg). 2

In equation (2) the permeability K is constant and
the fluid viscosity u is also a non-linear function of
temperature 7. In addition, the Fourier constitutive
equation for heat conduction and Maxwell-Gibbs
relations for the system internal energy can be used.
Therefore, the energy balance results as follows :

cV:(pvT) = V'(kaT)—T<(lp>V-v. 3)
oT),

In equation (3) the heat capacity c is taken as constant,
either for air or water, because its variation with T is
negligible in a wide range of temperatures. Since the
energy balance describes the system thought of as a
mixture (fluid and solid matrix) we have defined the
effective heat conduction through the following equa-
tion (see also, Gartling and Hickox [5]):

kn(T) = ok(T)+ (1 — )k, “

¢ being the porous medium porosity. Moreover, it is
found that k varies with temperature only through
the fluid conductivity k(T), which is also a non-linear
function of T, and that k, is independent of tem-
perature.

Equations (1)—(3) are next written in terms of the
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dimensionless stream function ¢ and temperature 6
with the same scales and symbols used by Prasad and
Kulacki [1], which are presented here in the
Nomenclature. However, it should be observed that
the stream function has to be redefined in this work

as follows:
o« oy ( pn
‘e "06Y<p) ®

aL & (py
=Diaxy <? (6)
so that mass balance (equation (1)) is satisfied when
the Boussinesq approximation is eliminated. From

equation (2) we can evaluate the term V x (uv) which
combined with equations (5) and (6) yields

o (M) o (May A OR
UV (M OY I Bl 4 T x 2 OB
4 ax(ze (’}X>+6Y<R 6Y> Regox O

v

where Ra* = KgfATp,/u,U is the Rayleigh number
evaluated at T,, 4 = L/D is the aspect ratio and
B = BAT is the dimensionless fluid coefficient of ther-
mal expansion. In equation (7) we have also defined
the dimensionless viscosity M(0) and density R(6)
as functions of dimensionless temperature 6 (see the
Appendix).

Equation (3) can be combined with equations (5)
and (6) in order to obtain the following dimensionless
equation :

8 { oy a [ oy

‘a7<"é‘y)+ary<"37z)
_ (g, 1 2 (00
=ax\Yox)Ta7ev\Fay

o (1dy ¢ (13dy
_(0+A)y[_ﬁ’<ﬁﬁ)+ﬁ<iﬁ’>] ®

where F(0) is the dimensionless effective conductivity
as a function of dimensionless temperature (see the
Appendix). Since 8 = (T—T,)/(T,—T.), a new par-
ameter A = T,./(T,— T.) is necessary to introduce in
the pressure work term. In equation (8), y is defined
as

,_L(@)__L@'ET_)@ ©)
V= pre\8T),  puc (8p/dp)s

In the dimensionless analysis presented here the
unknown characteristic velocity is U = ky,/(pycD),
which is consistent with the analysis of Prasad and
Kulacki [1].

Hydrodynamics and thermal boundary conditions
are

(10)
(1
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v =0, 3—0;:0 at Y=0andl. (12)

In order to explain physically these boundary con-
ditions, one has to observe that the fluid does not
leave the porous cavity, which implies that the normal
component of fluid velocity at the walls is zero. Also,
adiabatic walls require that heat conduction flux be
zero, while vertical walls have a prescribed value of
temperature.

Once the flow and temperature fields are numeri-
cally solved, we can evaluate two Nusselt numbers as

follows :
Nl
Nu, =L (5}>X:0dY (13)
at the hot wall and
160
Nu, = F(0 = ())f0 <ﬁ’>x=1dY (14)

at the cold wall.

Central finite difference equations are derived from
the divergence form of equations (7) and (8) ; however,
second upwind differences for the convective terms [6]
are introduced in the energy balance. In order to solve
the simultaneous algebraic equations that result from
the discretization process, a point iterative method is
applied which makes use of the new values at each
grid point as soon as they are available. A convergence
criterium is defined according to the following norms :

Ylp—yy

U———< Py
Yyl
.

and

Yle;—0;!

v <s
LA

where ij imply spatial position in the computational
mesh and 7 refers to the iteration number. ¢ was fixed
at 107° because the numerical method yields almost
the same Nusselt numbers as those obtained when
&= 10"° (differences do not exceed 1%) at a lower
computational cost.

To accelerate convergence, the temperature field is
initialized with the analytic solution of equation (8)
in the particular case when 4 = 0. For low Rayleigh
numbers, over-relaxation of the temperature matrix
accelerates convergence, and for high Rayleigh num-
bers, under-relaxation is appropriate to compute the
stream function. The over-relaxation parameter is
varied between 1 and 1.9, whereas a suitable value for
the under-relaxation parameter is between 0.5 and
0.9. Also, temperature gradients at the horizontal
walls are evaluated using two-point formulas for the
derivatives.
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Table 1. Meshes used for different values of Ra* and 4

Ra* 50 100 1000 2000 5000 10000
A=03 31x21 31x21 41 x 31 41 x31 41 x 31 41 x 31
05<4x1 31x31 31x31 41 x41 41 x 41 41 x 41 41 x 41
2<A4<3 21 %31 21 x31 31 x41 31x41 31x41 31 x4t

In the present work, grid intervals AX and AY are
continuously varied following the method proposed
by Kalnay de Rivas [7]. Therefore, a new coordinate
system (&, ) needs to be defined so that

X=sin2(g§>
=sin?( 2
Y = sin <2n>.

In the new coordinate system the grid intervals A¢ and
An have to be chosen as constant. With this coordinate
system, very fine grid intervals for X and Y can be
obtained near vertical walls, particularly when bound-
ary layers are present for large Rayleigh numbers.
Mesh sizes of the order of 0.0015 can be obtained near
walls for Ra* > 1000 and 4 < 1.

Table 1 shows meshes used for different Rayleigh
numbers and aspect ratios. These mesh sizes allowed
us to obtain an acceptable invariance of results when
An and A¢ are changed.

Consistency of numerical results can be verified
from a physical point of view by performing a macro-
scopic energy balance in the porous cavity, i.e. the
heat flux that enters the cavity through the hot wall
has to be equal to the heat flux that leaves the cavity
at the cold wall. Consequently, it is required that

(1%

(16)

Nu, = Nu,. a7n

This energy balance was satisfied within 1% for 94%
of the cases reported here, whereas the error was
within 2% for the rest (see also Prasad and Kulacki
[1]). Therefore, through this work we designate
Nu = Nuy, = Nu,, and Nugis the Nusselt number when
the Boussinesq approximation is imposed.

We have also carried out numerical evaluations
when equation (8) is discretized by using the first
upwind differencing scheme (see, e.g. ref. [6]).
Although the energy balance (equation (17)) is well
satisfied, this method yields Nusselt numbers which
are substantially different from those of the second
upwind difference scheme. Therefore, the first upwind
method is not recommended for this kind of problem
and our conclusion is the same as that already
reported by Prasad and Kulacki [1].

It is also important to mention here, that the classi-
cal central finite difference discretization procedure
can only be used accurately at low Rayleigh numbers.
To be more precise, we found that it can be used for
Ra* < 1000 when 4 < 1.

RESULTS AND DISCUSSION

When the Boussinesq approximation is imposed
(i.e.y =0and F= 1 inequation (8); M = R = 1 and
OR/0X = — B(00/0X) in equation (7)), our results are
in good agreement with those previously reported by
Prasad and Kulacki [1, 4]. In fact, Table 2 shows that
only small differences between Nusselt numbers Nug
are found for large Rayleigh numbers and low geo-
metric aspect ratios. These differences do not exceed
12%, and they are a consequence of the more refined
grid used. Nevertheless, the Rayleigh number at which
the flow structure changes from unicellular to multi-
cellular convection does not agree with that reported
by these authors when A4 = 0.5. Thus, our numerical
evaluations establish that cellular change is produced
for Ra* < 100. This result was obtained with and
without the coordinate transformation, with a differ-
ent number of grid points (21x21, 31x31 and
41 x 41) in both the X- and Y-directions and with two-
and three-point formulas for derivatives.

Throughout the present discussion, equations (7)
and (8) are designated the complete model. Therefore,
we performed calculations with this model for the
following two cases: water (Case I) and air (Case II).
The results obtained are next discussed and compared
with their counterpart that arises when the Boussinesq
approximation is imposed.

In order to evaluate the Rayleigh number, which is
proportional to (ATD), we consider three different
porous cavity widths, D: 200, 20 and 2 m, while AT
is varied from 1 to 200°C.

Case I: water

Table 3 shows numerical values of Nusselt number
Nu for different aspect ratios 4 and for D = 200 m.
These results are of particular interest in geothermal
reservoirs (see, e.g. ref. [8]).

If Table 3 is compared with Table 2 we find that Nu
is greater than Nuj for Ra* < 2000 (AT < 40°C); on
the other hand, the opposite situation is true for
Ra* > 2000 (AT > 40°C). Also, for Ra* < 2000,
differences between Nu and Nug do not exceed 10%,
while for Ra* = 10000 we find differences as large as
50%, independently of the value of 4.

In order to explain that Nu < Nuy for AT > 40°C,
one has to observe that the relation between the
Prandtl number evaluated at the local temperature 8
and the Prandtl number referred to the hot tempera-
ture, 8 = 1, is approximately unity or slightly greater
than one for AT < 40°C, and it is greater than one for
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Table 2. Selected values of Nuy for various Ra* and aspect ratios, from our numerical results and from the
results of Prasad and Kulacki

Ra* 50 100 1000 2000 5000 10000
This work Nug 1.14 1.39 10.11 18.99 38.19 59.25

A4=03 Flow structure u m m m m m
) P&K Nuy 1.13 — 10.66 — 41.46 67.00

Flow structure u m m m m m
This work Nug 1.45 2.19 13.62 22.03 38.47 55.89

A4=05 Flow structure u u m m m m
: P&K Nuyg 1.43 — 14.21 - 43.68 62.58

Flow structure u m m m m m
This work Nuy 1.74 2.73 13.83 21.14 35.35 50.46

A=07 Flow structure u m m m m u
' P&K Nug 1.69 — 13.51 - 38.95 55.52

Flow structure u m m m m u
This work Nug 1.93 3.00 13.29 19.79 3247 46.03

A=09 Flow structure u u m m u u
: P&K Nuyg 1.96 — 14.19 — 35.49 50.20

Flow structure u u m m u u
This work Nug 1.95 3.03 12.95 19.15 31.21 44.17

Ad=1 Flow structure u u m u u u
P Nug 2.01 3.17 14.62 21.51 33.58 48.18
This work Nug 1.95 2.87 10.16 14.51 22.81 31.62

Ad=2 Flow structure u u u u u m
P Nuy 1.94 2,97 11.26 — 2245 35.27
. Nug 1.44 2.50 8.52 12.09 18.89 26.41

A4=3 This work Flow structure u u u u u m

u, unicellular flow.

m, multicellular flow.

P & K, results reported in ref. [1].
P, results reported in ref. [4].

AT > 40°C. This relation can be evaluated directly
from M(8)/F(#) and when it is greater than one, the
variable temperature fluid has less thermal con-
ductivity and more viscosity than the Boussinesq fluid.

Although for AT <40°C, the relation
M(8)/F(0) =~ 1, differences between Nu and Nuyg are
due to the pressure work term in equation (8). More-
over, these differences present a minimum when
Ra* ~ 2000 (AT ~ 40°C) for all values of 4. In fact,
at this point, the effects on the heat transfer associated
with thermal changes in M(0)/F(6) and in the pressure
work term compensate each other.

From Table 3 it is concluded that the Nusselt num-
ber does not always increase for a fixed value of 4.
This is so because our complete model is able to evalu-
ate the exponential water viscosity decrease with AT;
therefore, when the temperature difference across the
porous cavity is near 100°C, the viscosity variation

becomes important on M(0)/F(0) and the heat trans-
fer decreases.

From Table 3 it is also interesting to analyse the
effect of the aspect ratio on Nu. Thus, it is concluded
that increasing A, the following trends are obtained :

(a) Nu decreases for 4 > 1 and Re* > 0;
(b) Nuincreases for 4 < 1 and Ra* < 1000;
(¢) Nu decreases for 4 < 1 and Ra* > 7500.

However, if 1000 < Ra* < 7500 and 4 < 1, the Nus-
selt number is not a2 monotonic function of 4. This
has also been observed by Prasad and Kulacki [1].
Figure 1 shows the relation Nu/Nuy as a function
of Ra* for different porous cavity widths. When D = 2
m, Nu/Nug is less than one for all Rayleigh numbers;
on the other hand, for D = 20 and 200 m there exists
a range of Rayleigh numbers in which Nu > Nu,. In
Fig. 1, smaller AT are required to obtain a fixed value

Table 3. Selected values of Nu for various Ra* and aspect ratios when D = 200 m (Case I)

Ra* 50 100 1000 2000 5000 7500 8500 10000

AT 1 2 20 100 150 170 200
A=03 1.2 1.47 11.05 18.82 29.43 31.11 30.65 29.42
A=05 1.51 2.44 14.47 21.55 30.19 31.18 30.65 29.28
A=07 1.89 3.07 14.53 20.60 27.93 28.66 28.12 26.84
A=09 2.11 3.34 13.90 19.26 25.72 26.32 25.83 24.60
4=1 2.17 3.40 13.51 18.64 24.75 25.30 24.84 23.67
A=2 2.14 3.16 10.52 14.05 18.11 18.42 18.12 17.28
A=3 1.90 275 8.82 11.72 15.10 15.38 15.14 14.43
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F1G. 1. Nu/Nug as a function of Ra* when the fluid is water
(Case I), T, = 200°C. The dashed line refers to the results
reported by Gartling and Hickox [5].

of Ra* when D increases. Therefore, the effect of the
pressure work is more important than the effect of the
local Prandtl number, on the heat transfer.

It is also interesting to mention here that Blythe
and Simpkins [9] studied thermal convection in a fluid
saturated porous layer through integral relations,
in the high Rayleigh number limit, for a tempera-
ture dependent fluid viscosity. Moreover, their
calculations consider a linear relation between
(6 = 0)/u(6) and 6. When their results (see Fig. 7
and equation (4-10) of ref. [9]) are applied to the case
in which water is the fluid that fills the porous cavity,
it is inferred that Nu is slightly greater than Nuj; for
Ra* < 10000 (AT < 200°C). Taking into account
that Blythe and Simpkins [9] used the cold walt tem-
perature as the reference temperature, we conclude
here that the trend of their results is in good agreement
with ours, although greater differences between Nu
and Nu, are expected in their work with a more
realistic functionality between u(f = 0)/u(f) and 0.

In order to compare our results with those reported
by Gartling and Hickox [5], it should be observed that
in their work a Rayleigh number equal to 300 implies a
AT = 70°C, hence the system studied by these authors
yields values that lie between the curves corresponding
to D =20 and 2 m, and they are illustrated by a
dashed line in Fig. 1.

Figure 2 shows the temperature profile at the
midheight of the porous cavity when 4 =1 and
D =200 m for different Ra*, obtained from the
numerical solution of the complete model (full lines)
and when the Boussinesq approximation is considered
(dashed lines). For Ra* = 50 (AT = 1°C) temperature
profiles computed from both models are similar. How-
ever, for Ra* = 5000 (AT = 100°C) the curves of 8 as
a function of X depend substantially upon which
model is used. Results illustrated in Fig. 2, show that
large values of Ra* are associated with sharp tem-
perature drops near the vertical walls due to the
boundary layer formation, as it is expected, while in
the core region the temperature is linear in X for the
complete model and it is almost constant when the
Boussinesq approximation is considered. Also, in this

M. B. PEIROTTI ef al.
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F1G. 2. Temperature distribution at the vertical midplane,
Y =0.5,for 4 =1and D = 200m (Case I).

last case, 6 as a function of X and at Y = 0.5, is
practically invariant for Ra* = 5000.

If Ra* > 2000 the slope d6/d X, near vertical walls,
for the complete model is always smaller than
the slope for the Boussinesq approximation; this is
consistent with the result that Nu/Nug<1 for
Ra* = 2000. Since the transition from pure con-
duction to boundary layer regimes is a consequence
of competition between heat conduction and heat con-
vection, it is inferred that this transition has to occur
at higher Rayleigh numbers than those predicted by
considering the Boussinesq approximation, when
water is the fluid that fills the porous cavity.

Figure 3 shows temperature distributions at
X =0.5 for two values of Ra* when 4 =1 and
D = 200 m, for the complete model (full lines) and for
the Boussinesq model (dashed lines). In this figure,
linear temperature profiles in Y, of variable extension,
are observed. Nevertheless, for large values of Ra*,
results corresponding to the complete model show
that these linear regions are not placed in the middle
zone of the porous cavity, as it always occurs when
the Boussinesq approximation is used.

From curves shown in Figs. 2 and 3, and from all
the examples discussed in Case I, it is concluded that
the dimensionless temperature at the porous cavity

v
,’ ~— COMPLETE MODEL
e ~—— BOUSSINESQ APPROXIMATION|
00 § Y SO NN VAN NS SN N WO |
00 Q2 04 Y 06 08 10

Fi1G. 3. Temperature distribution at the horizontal midplane,
X =0.5,for4d=1and D =200m (Case I).
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Table 4. Flow structure for various Ra* and aspect ratios, for Boussinesq approximation (BA) and complete
model (CM) in Case I (D = 200 m)

Ra* 50 100 1000 2000 5000 10000
AT 1 2 20 40 100 200
CM u u m m m m
A4=03 BA u m m m m m
CM u u m m u u
A4=05 BA u u m m m m
CM u u m m u u
A4=07 BA u m m m m u
_ CM u u m u u u
4=09 BA u u m m u u
A=1 CM u u u u u u
. BA u u m u u u
CM u u u u u u
A=2 BA u u u u u m
A4=3 CM u u u u u u
- BA u u u u u m

u, unicellular flow.
m, multicellular flow.

centre (X = 0.5 and Y = 0.5) is close to 0.5 only for
AT < 40°C when the complete model is considered.
This result points out that the condition usually
employed in approximate analysis, based upon the so-
called ‘centro symmetric property of the system’ (see,
e.g. ref. [10]) is only valid for low values of AT.

Numerical results obtained through the evaluation
of the two models studied here, show important
differences in flow structure as shown in Table 4,
where multicellular flow (two recirculating cells)
appears in a smaller range of Ra*, when the fluid
properties vary with temperature.

Figures 4 and 5 show the isotherms and streamlines
for the complete model and the Boussinesq approxi-
mation when Ra* = 1000 and AT =200°C. It is
observed that isotherms are nearer the vertical walls
in Fig. 5 (Boussinesq model) and that streamline dis-
tribution is remarkably affected by temperature-
dependent fluid properties. The solution that belongs
to the complete model (Fig. 4) does not show the
centro symmetric property which is always observed
in the Boussinesq solution (see Fig. 5 and results
reported in ref. [1]). This asymmetry in the streamline
distribution is a characteristic of the complete model
solution and has been already reported by Gartling
and Hickox [5] for small values of Ra*. Qur numerical
evaluations show that when only one cell is present in
the flow field and AT > 40°C, the cell is displaced
towards the hot wall of the porous cavity, if water is
the fluid that fills the porous medium.

Case II: air

In this particular case the pressure of the system is
maintained near 1 atm; hence air is assumed as an
ideal gas. It is readily shown that equation (9) can be
written as

_ R(O)R,
T M,e

HMT 30:12-1

where R, is the gas-law constant and M, is the average
molecular weight of air.

It is clear that if air is the fluid that fills the porous
cavity, the permeability of the porous medium must
be considerably greater in order to obtain a Rayleigh
number comparable to that of Case I, when the dimen-
sions of the system are not changed (see the Appen-
dix).

Table 5 shows Nusselt numbers obtained from the
complete model when D = 200 m, for different aspect
ratios 4. From this table it is concluded that, increas-
ing A, the following trends are obtained :

(a) Nu decreases for 4 > 1 and Ra* > 0;
(b) Nuincreases for A < 1 and Ra* < 1000;
(¢) Nu decreases for 4 < 1 and Ra* = 5000.

FiG. 4. Streamlines and isotherms for Ra* = 1000
(AT = 200°C) and 4 = 1 (Case I).
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F1G. 5. Streamlines and isotherms for Ra* = 1000 and 4 = 1
(Boussinesq approximation).

However, if 1000 < Ra* < 5000, the Nusselt number
is not a monotonic function of 4. A similar result has
been observed in Case I and in ref. [1].

If Table 5 is compared with Table 2, it is concluded
that Nu/Nug > 1. For a fixed value of 4, differences
between Nu and Nug are small (~ 5%) when Ra* = 50
(AT = 1°C) and increase for large Rayleigh numbers.
Thus, the relative difference between Nu and Nu, is
around 36% when Ra* = 10000 (AT = 200°C). It is
important to mention here that Zhong er al. [11]
studied the effects of variable properties on tem-
perature and velocity fields and heat transfer rate in
a two-dimensional square enclosure filled with air.
They conclude that the Boussinesq approximation
predicts the overall heat transfer adequately, up to a
value of AT = 50°C. From our Tables 2 and 5, we
find that differences between Nu and Nuy do not
exceed 13% for AT < 40°C. Therefore, our results are
in good agreement with those reported in ref. [11].

The trend followed by the relation Nu/Nug as a
function of Ra* in Case II, is different from that
previously reported in Case I. In order to explain this
result, one has to observe that air viscosity increases
with temperature while the opposite is true for water
viscosity ; thus, in Case II the relation M(8)/F(0) is

M. B. PeROTTI et al.
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F1G. 6. Nu/Nuy as a function of Ra* when the fluid is air
(Case II), T}, = 200°C.

—— COMPLETE MODEL
==~ BOUSSINESQ APPROXIMATION

F1G. 7. Temperature distribution at the vertical midplane,
Y =0.5, for A = 1 and D = 200 m (Case II).

less than one for all values of AT. Therefore, the effects
on the heat transfer associated with thermal changes
in M(0)/F(0) and in the pressure work are additive.

Figure 6 shows Nu/Nuy as a function of Ra* for
different porous cavity widths. As it is expected from
our previous discussion, Nu > Nuy for all values of D
and Ra*.

Figure 7 shows the temperature profile at the
midheight of the porous cavity when 4 =1 and
D = 200 m for different values of Ra*, when the com-
plete model (full lines) and the Boussinesq approxi-
mation (dashed lines) are considered. For Ra* = 50
(AT = 1°C) temperature profiles computed from both
models are similar. However, for Ra* = 5000 and
10000, curves of 6 as a function of X depend again
substantially upon which model is used.

Table S. Selected values of Nu for various Ra* and aspect ratios when D = 200 m (Case I)

Ra* 50 100 1000 2000 5000 10000
AT 1 2 20 40 100 200
A=03 1.20 1.49 12.46 23.36 49.39 88.96
A=05 1.52 2.49 15.95 25.85 47.65 80.67
A=07 1.91 313 15.89 24.44 43.32 72.47
A=09 2.14 3.40 15.13 22.73 39.67 66.13
A=1 2.20 3.45 14.72 21.96 38.11 63.50
A=2 2.16 3.21 11.40 16.45 27.48 47.97
A=3 1.92 2.19 9.54 13.71 22.94 40.02
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F1G. 8. Temperature distribution at the horizontal midplane,
X =035, for 4 =1and D = 200 m (Case II).

Also the slope df/dX, near vertical walls, for the
complete model is always greater than the slope for
the Boussinesq model. Consequently, in this par-
ticular case the transition from pure conduction to
boundary layer regimes occurs at lower Rayleigh
numbers than those predicted with the Boussinesq
approximation, which is a result different to that
obtained in Case .

Figure 8 shows the temperature distribution at
X =0.5 for two values of Ra* when 4 =1 and
D = 200 m, obtained from the evaluation of the com-
plete model (full lines) and the Boussinesq model
(dashed lines). It is observed that curves 8-Y for air
(Fig. 8) and water (Fig. 3) are similar when Ra* = 50.
However, for Ra* = 10000, the functionality between
fand Y, at X = 0.5, depends substantially upon which
fluid fills the porous cavity.

From the curves shown in Figs. 7 and 8 and from
examples discussed in this case, the dimensionless tem-
perature at the porous cavity centre (4 =0.5 and
Y = 0.5) is only close to 0.5 for low values of AT when
the complete model is evaluated. This result is the
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Fic. 9. Streamlines and isotherms for Ra* = 1000
(AT = 200°C) and 4 = 1 (Case II).

same as that reported for water in Case L.

Numerical results obtained through the evaluation
of both models show a different change in flow struc-
ture as shown in Table 6. These results and those
presented in Table 4 point out that the criterion stated
by Prasad and Kulacki [1] for the start of multicellular
flow is no longer valid for the complete model, i.e.
when fluid properties are dependent on temperature.

Figure 9 shows the isotherms and streamlines for
the complete model when Ra* =1000 and
AT = 200°C. In this figure, the isotherms are nearer
the vertical walls of the cavity than in Fig. S where the
Boussinesq approximation is used. Also the stream-
line distribution is remarkably affected by tem-
perature-dependent fluid properties, and the solution
does not present the centro-symmetric property as in

Table 6. Flow structure for various Ra* and aspect ratios, for Boussinesq approximation (BA) and complete
model (CM) in Case IT (D = 200 m)

Ra* 50 100

1000 2000 5000 10000
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100 200
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u, unicellular flow.
m, multicellular flow.
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Case I, which is always observed in the solution of the
Boussinesq model. However, when one recirculating
cell is present in the flow field at AT > 40°C, this cell
is displaced toward the hot wall in Case I, while in
Case II it is displaced toward the cold wall of the
cavity.

CONCLUSIONS
From our numerical study we conclude :

(1) If the temperature difference across the porous
cavity is increased, i.e. increasing the Rayleigh number
for a fixed value of aspect ratio, the Boussinesq solu-
tion shows a progressive departure from the solution
of the complete model described in this work.

(2) If water is the fluid that fills the porous cavity
(Case 1), the relation Nu/Nug as a function of Ra*,
can be either lower or greater than one when the cavity
width is sufficiently large. However, for small values
of D, this relation is always less than one.

(3) If air is the fluid that fills the porous cavity
(Case II), the relation Nu/Nug as a function of Ra* is
greater than one for all values of D.

(4) If water is the fluid that fills the porous cavity,
the change from pure conduction to boundary layer
flow regimes takes place at larger Rayleigh numbers
than those predicted with the Boussinesq model.
However, the opposite is true if the fluid is air.

(5) Asymmetries in flow fields are observed for
AT = 40°C. For the unicellular flow regime, the centre
of the cell is displaced toward the hot wall for water
and toward the cold wall for air.
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APPENDIX: POROUS MEDIUM AND FLUID
PROPERTIES USED IN CASES | AND II

Case I. water

pr=08gem™?
p=2x10"°C"!
c=501Jg'°C"!

-1

= 1.07x 10 gem~'s
kon = 1.94x 1072 Jem s °C!
K = 0.809x 10~%cm?
¢ =04
with these values the Rayleigh number can be written as
Ra* =2.5%x 102 ATD

where AT is in °C and D in c¢m.
From data reported in the literature [12] we find

R(0) = 1—0.002[AT(6 — 1)]—0.4058 x 10— S[AT(6 — )}
—0.2455 x 10~ 4AT(0 — )

10248/‘[AT(0+A)~ 140]

M) =

TP BT A= T30
F(8) = {2.59¢[1+0.005345[AT(0 —1)]
+0.14x 10-[AT(@— DF

+0.186 x 10-"[AT(0— 1)F]
+1.5(1—¢)}/[2.59¢ +1.5(1— p)].

Case II: air
¢ =04
pn=0.743x 10 gem 3
B=2x10"*°C"!
c=1.05Jg'C

Mty =2x10"*gem™'s™!
kn = 091x1072Jem~'s~'°C™!
K =39%x10"2cm’.
with these values the Rayleigh number can be written as
Ra* =2.5x10"*ATD

where AT is in °C and D in cm.
From data reported in the literature [12) we find

R(8) = 1—0.002[AT(8— 1)} —0.168 x 10~ "[AT(6 — 1)}
M(6) = 1 +0.001[AT(0—1)]—0.124 x 10~5[AT(6 — )]
F(0) = {0.047¢[1 ~0.00125[AT(— 1))
~0.73 x 10-[AT(6 — )]
+1.5(1—)}/[0.047¢ +1.5(1— ¢)}.
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CONVECTION THERMIQUE NATURELLE DANS UNE CAVITE RECTANGULAIRE
AVEC PROPRIETES VARIABLES DU FLUIDE—VALIDITE DE L’APPROXIMATION DE
BOUSSINESQ

Résumé—1L’applicabilité de I'approximation de Boussinesq est étudiée pour la convection naturelle dans
une cavité poreuse saturée de fluide, avec des parois verticales maintenues 4 deux températures différentes,
et des parois horizontales parfaitement isolées. Des calculs numériques sont conduits pour deux fluides
d’intérét pratique, ’eau et I’air, dans un large domaine de nombre de Rayleigh et de rapport de forme. On
présente les champs de vitesse et de température, ainsi que les flux thermiques transférés, obtenus 4 partir
d’un modéle avec la température. Une conclusion la plus importante est que le nombre de Nusselt évalué
avec I'approximation de Boussinesq peut étre sensiblement différent de celui obtenu avec ce modéle.

WARMETRANSPORT DURCH NATURLICHE KONVEKTION IN EINEM
RECHTECKIGEN POROSEN KORPER MIT VARIABLEN
FLUIDSTOFFWERTEN—GULTIGKEIT DER BOUSSINESQ-APPROXIMATION

Zusammenfassung—In dieser Arbeit wird die Brauchbarkeit der Boussinesq-Approximation fiir natiirliche
Konvektion in einem fluid-gesittigten, pordsen Koérper untersucht, dessen vertikale Winde auf zwei
verschiedenen Temperaturen gehalten werden, und dessen horizontale Winde vollkommen isoliert sind.
Es werden fiir zwei in der Praxis interessante Fluide, Wasser und Luft, numerische Berechnungen in einem
weiten Bereich der Rayleigh-Zahl und des Seitenverhiltnisses durchgefiihrt. Es werden Stromungs- und
Temperaturfelder sowie Wirmeiibergangskoeffizienten présentiert, welche mit einem Modell berechnet
wurden, das temperaturabhingige Stoffwerte fiir das Fluid berucksichtigt. Eine der wichtigsten
Erkenntnisse ist, daB die iiber die Boussinesq-Approximation berechnete Nusselt-Zahl stark von der
Nusselt-Zahl abweicht, die mit dem hier vorgestellten Modell berechnet wurde.

CBOBOJTHOKOHBEKTHUBHBI TEIUIOOBMEH XWUAKOCTU C NMEPEMEHHBIMU
CBOVICTBAMH B IMPSMOVIOJILHOM IMOPUCTOM MOJOCTHU
(ITPABOMEPHOCTDb INPUBJIMXXEHHWSA BYCCHUHECKA)

Anporauas—HM3yyena Bo3MOXKHOCTb MpuMeHeHns npubimkeHns ByccuHecka B ciyyae cBOGOIHOM KOH-
BEKIHH B MIOPHCTO HACBHIIEHHOH XHUIKOCTBIO MOJOCTH, BEPTHKAJILHLIE CTEHKH KOTOPOi HMEIOT Pa3HyIo
TEMNEpPaTypy, a TOPH3OHTAJIbHBIC MONHOCTBIO TEIMJIOH30JMPOBAHbI. BHIMONHEHb! YHC/ICHHBIE PAaCYEThI
IUIS ABYX Pa3IMYHbIX CPE/ (BOOBI H BO3[yXa) B LIMPOKOM AMANA30HE 3HaYeHMH yucia Pases u oTHOLIE-
HHS JUIHH CTOPOH noJjiocTH. [IpuBeneHs! pe3yabTaThl pacueTa MojeH TEMNEPATYPH! ¥ CKOPOCTH TEHEHHS,
a TaKkXe MHTCHCHBHOCTEH Terloo6MeHa Mo MOJIENH, YYHMThHIBaIOLIEH 3aBHCHMOCTE CBOHCTB Cpelsl OT
TemnepaTyphl. OIHH H3 CaMbIX BaXXHBIX BbIBOJAOB 3aKIIOYACTCA B TOM, YTO 3HadeHus yucia Hyccenbra,
NOJIyYeHHbIE C MOMOLUBIO NpHGIMKeHHa ByccHHecka ¥ Ha OCHOBE NMPHHATOM MOENH, MOTYT CYLLUECT-
BEHHO Pa3/IH4aThCA.
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